Editorial

Bacillus Calmette-Guerin: Established and emerging roles for an old friend

Fotios Sampsonas

Respiratory Medicine Department, University Hospital of Patras, Greece

Key words:

- BCG
- TBC
- Covid-19
- Lung Cancer
- Immunomodulation

Correspondence to:

Fotios Sampsonas, Consultant Respiratory Medicine, University Hospital of Patras, 26504, Rion, Patras, Greece Tel: +306977713684 Fax: +302610999523 Email: fsampsonas@gmail.com Bacillus Calmette-Guerin (BCG) has been used from the 1920s¹ as a stimulant of the Th1 immune response in order to slow down tuberculosis (TB) dissemination². Globally, almost 2 billion people are estimated to be infected and 10 million people have develop active disease every year. BCG vaccination is still one of the cornerstones for the prevention of the disease. It remains even today one of the most used vaccines globally³. In the region of eastern Mediterranean 87% of countries do have an active BCG vaccination plan in place, but inconsistency issues and high left out/ dropout rates are still encountered³.

Three different BCG strains are globally most often used: the Moscow-368, Tokyo 172-1 and Sofia SL222 variants². Vaccines contain dead and living bacilli as per WHO guidelines in terms of safety, quality and efficacy^{1,2}. In previous decades many concerns have risen for its safety and efficacy with regards to pulmonary and extrapulmonary TB prophylaxis. All these have been grossly addressed by randomized control trials (RCTs) that showed significant protection rates of BCG vaccination of neonates, especially against meningeal and miliary TB. These protective properties of the vaccine were questionable, especially when performed at school-age children that have not been screened prior of the vaccination with a standard Tuberculin Skin Test (TST)⁴⁻⁶.

Following the initial perception that BCG vaccination protects against severe disease only, a recent meta-analysis revealed that BCG might as well have a role in protecting against primary infection from TB⁷, leprosy⁸ and non-tuberculous mycobacteria (NTM)⁹. On top of that, multiple immuno-modulatory effects of BCG have been described over the last 3 decades, highlighting an additional role of BCG in reducing all-cause mortality especially in infancy and childhood. It has been documented that children have a relative risk of 0.70 for all-cause mortality when vaccinated¹⁰.

BCG vaccination's beneficial effect is larger than somebody would expect from their direct effect on the disease that are directed against to. Interestingly, BCG vaccination is in vitro grossly protective against extensive lung injury from many pathogens that can reach alveolar space, like Influenza. This could occur by augmenting successful efferocytosis and preventing diffuse lung damage from Influenza A virus¹¹. In other words, BCG vaccination seems to orchestrate the successful lung inflammatory homeostasis, promotes and maintains a balanced lung inflammation with minimal side damage to the lung parenchyma per se, diminishing at the same time the subsequent development of fibrotic scaring¹¹. BCG vaccination has also been associated with reduced infection rates from yellow fever, fungi like *Candida spp, Plasmodium* malariae and others¹²⁻¹⁴.

Of note, a recent a 60-year retrospective study revealed that BCG vaccinated children of Indian American and Alaska native origin had a lower lung cancer development rates in adulthood, after adjusted for significant epidemiological variables like sex, smoking habit and age¹⁵. Authors highlighted the fact that BCG protective effect against lung cancer was not related to its protective properties against tuberculosis per se, but seemed to be related to a direct immunomodulatory activity. This activity is of no surprise, since BCG is one of the mainstream immunotherapy treatments for non-invasive bladder cancer¹⁶ or even for stage III non operable in-transit melanoma as direct intralesional infusion¹⁷. In vitro incubation of various cancerous and non-cancerous cell lines with BCG seems to stimulate and regulate the release of numerous pro-inflammatory cytokines such us TNF-α, IL-1β, IL-6 among others. Previous reports for associations of BCG with lymphomas have been addressed and rejected by a recent metanalysis¹⁸. A BCG vaccination in early life could also shift the immune response towards Th1-type of inflammation that eventually would also be transiently protective against asthma¹⁹.

In view of the above mentioned immunomodulatory and broad-spectrum, lung protective, properties of BCG vaccination, recent studies report that widespread BCG vaccination may facilitate in flattening the curve of the increase of new COVID-19 cases²⁰. BCG vaccination could be more effective against the COVID-19 infection if multiple doses are being administered²¹.

In conclusion, BCG vaccination might offer a widespread protection not only against TB, but also against other pathogens that affect respiratory tract and parenchyma, like severe respiratory syndrome related to COVID-19. BCG is also widely used against melanoma and bladder cancer and might have a favorable role in other chronic inflammatory disorders.

CONFLICTS OF INTEREST

No conflicts of interest to declare.

REFERENCES

1. Luca S, Mihaescu T. History of BCG vaccine. Maedica (Buchar) 2012; 8:53-8.

- 2. World Health Organization. BCG vaccines: WHO position paper. Weekly Epidemiological Record. February 2018; 9:73-96.
- 3. Morbidity and Mortality Weekly Report 2019; 68:937-42.
- Mangtani P, Abubakar I, Ariti C, et al. Protection by BCG vaccine against tuberculosis: A systematic review of randomized controlled trials. Clin Infect Dis 2014; 58:470-80.
- Abubakar I, Pimpin L, Ariti C, et al. Systematic review and metaanalysis of the current evidence on the duration of protection by bacillus Calmette–Guérin vaccination against tuberculosis. Health Technol Assess 2013; 17:1-372.
- Colditz GA, Brewer TF, Berkey CS, et al. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA 1994; 271:698-702.
- Roy A, Eisenhut M, Harris RJ, et al. Effect of BCG vaccination against Mycobacterium tuberculosis infection in children: systematic review and meta-analysis. BMJ 2014; 349:(g4643)1-11.
- 8. Merle CS, Cunha SS, Rodrigues LC. BCG vaccination and leprosy protection: review of current evidence and status of BCG in leprosy control. Expert Rev Vaccines 2010; 9:209-22.
- Trnka L, Dankova D, Svandova E. Six years' experience with the discontinuation of BCG vaccination. 4. Protective effect of BCG vaccination against the Mycobacterium avium intracellulare complex. Tuber Lung Dis 1994; 75:348-52.
- Higgins JPT, Soares-Weiser K, López-López JA, et al. Association of BCG, DTP, and measles containing vaccines with childhood mortality: systematic review. BMJ 2016; 355:i5170.
- Mukherjee S, Subramaniam R, Chen H, et al. Boosting efferocytosis in alveolar space using BCG vaccine to protect host against influenza pneumonia. PLoS One 2017; 12:1-19.
- Kleinnijenhuis J, Quintin J, Preijers F, et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci USA 2012; 109:17537-42.
- Parra M, Liu X, Derrick SC, et al. Molecular analysis of non-specific protection against murine malaria induced by BCG vaccination. PLoS One 2013; 8:(e661150)1-8.
- Arts RJW, Moorlag SJCFM, Novakovic B, et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe 2018; 23:89-100.e5.
- Usher NT, Chang S, Howard RS, et al. Association of BCG Vaccination in Childhood With Subsequent Cancer Diagnoses: A 60-Year Follow-up of a Clinical Trial. JAMA Netw Open 2019; 2(e1912014)1-12.
- Babjuk M, Bohle A, Burger M, et al. EAU guidelines on nonmuscle invasive urothelial carcinoma of the bladder: update 2016. Eur Urol 2017; 71:447-61.
- Kremenovic M, Schenk M, Lee DJ. Clinical and molecular insights into BCG immunotherapy for melanoma. J Intern Med 2020; Mar 4. doi: 10.1111/joim.13037. Online ahead of print.
- Salmon C, Conus F, Parent MÉ, Benedetti A, Rousseau MC. Association between Bacillus Calmette-Guerin (BCG) vaccination and lymphoma risk: A systematic review and meta-analysis. Cancer Epidemiol 2020; 65:(101696)1-20.
- 19. Linehan MF, Nurmatov U, Frank TL, Niven RM, Baxter DN, Sheikh

A. Does BCG vaccination protect against childhood asthma? Final results from the Manchester Community Asthma Study retrospective cohort study and updated systematic review and meta-analysis. J Allergy Clin Immunol 2014;133:688-95.

20. Berg MK, Yu Q, Salvador CE, Melani I, Kitayama S. Mandated

Bacillus Calmette-Guérin (BCG) vaccination predicts flattened curves for the spread of COVID-19. medRxiv 2020. doi:10.1101 /2020.04.05.20054163. Preprint.

21. Ayoub BM. COVID-19 vaccination clinical trials should consider multiple doses of BCG. Pharmazie 2020; 75:159.